Journal of Scientific Computing (2020) 82:67
https://doi.org/10.1007/510915-020-01173-5

®

Check for
updates

A Riemannian Optimization Approach for Solving the
Generalized Eigenvalue Problem for Nonsquare Matrix
Pencils

Jiao-fen Li' - Wen Li? - Seak-Weng Vong? - Qi-Lun Luo? - MingQing Xiao*

Received: 28 January 2019 / Revised: 4 January 2020 / Accepted: 20 February 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract

In this paper, based on the Riemannian optimization approach we propose a Riemannian
nonlinear conjugate gradient method with nonmonotone line search technique for solving
the [ parameterized original problem on generalized eigenvalue problems for nonsquare
matrix pencils, which was first proposed by Chu and Golub (SIAM J Matrix Anal Appl
28:770-787, 2006). The new innovative approach is to reformulate the original optimization
problem as a feasible optimization problem over a certain real product manifold. The global
convergence of the proposed method is then established. Some numerical tests are given to
demonstrate the efficiency of the proposed method. Comparisons with some latest methods
are also given.

Keywords Generalized eigenvalue - Nonsquare pencils - Riemannian optimization -
Stiefel manifold
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1 Introduction

Giventwo matrices A, B € C"*" andm > n,theset{A—AB; A € C} constitutes anonsquare
matrix pencil. The generalized eigenvalues of the nonsquare matrix pencil are those values
A € Csothatforeach A there exists anonzero vector v e C”", called a generalized eigenvector,
such that the pair (X, v) satisfies

(A—AB)v=0.
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During recent years such problems (e.g., see [1-5] and references therein) have received
considerable attention across various areas due to many potential applications.

The main challenge of the generalized eigenvalue problem for nonsquare pencils in prac-
tice is following: even if n linearly independent eigenpairs (Ag, Vi), k = 1, ..., n, are known
to exist in the noiseless case, these eigenpairs may fail to exist under some perturbations. To
overcome this difficulty, Boutry et al. [1] considered an optimization problem by looking for
the minimum perturbation of the given pair of matrices (A, B) such that the perturbed pair
(A, E’) still remains to be n linearly independent eigenvectors:

inf IA —A|? + B — B|?
subject to A, Be Cm (s vi)lie, € Cx Cr,
AAvk:}\.kévk, k=1,2,...,n, (I.1)
A FErj, VI <k #j<n,
{vi, v2, ..., vy} : linearly independent,

where || M || denotes the Frobenius norm of a complex matrix M which will be defined in
the end of this section. Two special cases of (1.1) that allow for a simpler formulation of
this optimization problem were studied in [1]. The first case isn = 1, i.e., A, B € C™, that
was discussed. For this case Boutry et al. have showed that (1.1) is equivalent to a total least
squares problem, and have derived a closed form solution. The second case with n > 1 was
further studied, under the assumption that a single finite eigenvalue is known to be existed.
The simplified formulation of the minimal perturbation approach for this special case can
then be characterized as

inf IA — Al> + 1B — B|?
subject to A, BeC™n" (), v)CCxC", (1.2)
Av = ABv, v#0.

For this case an efficient numerical algorithm is proposed to seek the possible solutions.
However, the authors in [1] pointed out that the general problem (1.1) is complicated and is
still open in literature.

Subsequently, Chu and Golub [2] considered the more general case of the problem (1.1)
with a positive integer [, 1 </ <n,i.e.,

inf A= AI?+ (B - BI?
subject to A, Be Cm>n A (A, Vk)}§(=1 cCx(Cn,
Avp = MBvi, k=1,2,....,1, (1.3)
A A VI <k#j <1,
{vi, va, ..., vi} : linearly independent.

It is noted that the problem (1.3) is formulated more general than (1.1) and (1.2), since the
caseof / = nis(1.1)and thatof/ = 1in(1.2).In [2], Chu and Golub have given the algebraic
characterization for the infimum of the cost function in the problem (1.3), and they have also
shown that this infimum can be obtained by solving the following optimization problem over
a compact set of matrices,

min{m,2l}
minimize > o}AVBV]: veC™ vHv =11, (1.4)
i=l+1

where o; (M) is the i th singular value of M € C™*" with decreasing order, namely, o1 (M) >
02(M) > - > Omin{m,n)(M). Moreover, as pointed out in [2], the infimum of the objection
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function in (1.1) has a very concise algebraic characterization by (1.4) with [ = n, and some
equivalent characterizations for the problem (1.2) given in [1] can also be rederived by (1.4)
with [ = 1. But no algorithm for solving the corresponding optimization problem (1.4) was
given in [2]. Very recently, Ito and Murota [5] proposed a robust algorithm for the problem
(1.1), which is based on the total least squares problem introduced by Golub and Van Loan
[6]. They have shown by numerical examples that their algorithm is more robust against
data noise than the algorithm given by Boutry et al in [1]. Further, they also point out in the
conclusion part of [5]: “A challenging future work is to extend our results to the problem
(1.3) containing a parameter /, which seems to be much more complicated than (1.1)”. To
the best of our knowledge, the numerical algorithms for solving the problem (1.3) are still
remaining open at this point.

Motivated by the aforementioned studies, in this paper, we are going to establish numerical
approaches for solving the problem (1.3), by directly focusing on the optimization problem
(1.4) from the numerical point of view. The main contributions of this paper are summarized
in the following:

1. We reformulate the problem (1.4) into a Riemannian optimization problem on the product
of two complex Stiefel manifolds under the optimization framework. For the purpose of
approach feasibility, we then consider the reformulated problem as an equivalent one
on the product of two real manifolds, each of which is an intersection of the real Stiefel
manifold and the “quasi-symplectic set”, which will be defined in Sect. 2. Our formulation
leads to the numerical approach for solving (1.3) being not only feasible and approachable
but also efficient in numerical implementation.

2. We develop a Riemannian nonlinear conjugate gradient method for the optimization prob-
lem on the real product manifold, for which we generalize Dai’s nonmonotone conjugate
gradient method [7] from the Euclidean space to Riemannian product manifolds. To make
the algorithm be more transparent, we first translate the algorithm into a complex-value
form, and then develope a complete algorithm for solving the original problem (1.3)
efficiently.

Numerical results show that the proposed algorithm is quite efficient for solving the
problem (1.3) with any 1 <[ < n. Detailed comparisons with Boutry et al.’s algorithm [1]
for the problem (1.2) in the case / = 1, Ito and Murota’s algorithm [5] for the problem (1.1)
in the case [ = n are also given. For the case [ = n, the algorithm is less affected by the data
noise and guaranteed to yield n eigenpairs, and the algorithm generated exactly the same
optimal solution as Ito and Murota’s algorithm [5], which is essentially a direct method to
solve the problem (1.1), and was proposed by Boutry et al. in [1]. Moreover, the algorithm
runs faster than Boutry et al.’s algorithm [1] for the case [ = 1, where the perturbed pair
with minimal perturbation admits at least one engenpair.

The rest of this paper is organized as follows. In Sect. 2 we reformulate (1.4) as a Rie-
mannian optimization problem on the product of two complex Stiefel manifolds, and then
reformulate into a real optimization problem over a certain real product manifold for the
purpose of feasibility. Sect. 3 studies the geometric properties of the resultant real product
manifold. A Riemannian nonlinear conjugate gradient numerical method is developed in
Sect. 4, and its global convergence is also established in this section. Finally, some numerical
tests are reported in Sect. 5, and some concluding remarks are given in Sect. 6.

Notation Let MT, M and tr(M) represent the transpose, conjugate transpose and trace of
a matrix M, respectively. I, is the identity matrix of order n. Re(M) and Im(M) denote the
real and imaginary parts of M. sym(M) := (M 4+ MT)/2 denotes the symmetric part of a
real matrix M. Let N be the set of positive integers. Let R”*4 and CP*4 be the set of all
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p % g real matrices and the set of all p x ¢ complex matrices, respectively. Let S'*! and
AS"™ be the sets of all I x [ real symmetric and skew-symmetric matrices, respectively. For
two complex matrices M, N € CP*4, their inner product is defined by

Te(M" N) = Re(tr(MY N)) = tr (Re(M)TRe(N)) i (im(M)Tim(N)) . 15)

Then CP*7 is a Hilbert inner product space over R and the matrix norm induced by this
inner product is

IM| = VTe(ME M) = Re(tr(M M)))? = (M M))>. (1.6)

2 The Transformed Problem

In this section, we reformulate the problem (1.4) into a Riemannian optimization problem on
the product of two complex Stiefel manifolds. For the purpose of feasibility, we further rewrite
the reformulated problem as an equivalent problem on the product of two real manifolds,
with each of them being an intersection of the real Stiefel manifold and the “quasi-symplectic
set” to be defined later on.

First of all, we start with the following elementary lemma.

Lemma 2.1 (Theorem 3.3 of [8]) Let M € C™*™ be a Hermitian matrix with eigenvalues
M == A Let Up € C™ URU = 1. Then dp—ig1 + -+ + A = ng]intr(U,HMUz).
1

Following from Lemma 2.1, the problem (1.4) can be rewritten as follows:

minimize ||[[AV BV]P|?
subjectto Ve ", VHY =1, 2.1
peC? pip=,.

Note that a real Stiefel manifold is defined to be St(n,/,R) = {¥ € R*™|yTy = I}.

Because of the constraints, the set of all feasible points of the problem (2.1) naturally becomes

the product manifold St(n, [, C) x St(21, I, C), where St(n, [, C) is the complex Stiefel man-

ifold defined by St(n, !, C) = (Y € C"!|YH#Y = I;}. Then (2.1) can be equivalent to the
following Riemannian optimization problem

{minimize f(V,P):=|[AV BV]P|? 2.2)

subjectto  (V, P) € St(n, [, C) x St(21,1, C). ’

When dealing with the complex-value optimization problem, we generally convert them

to a real-value form. Motivated by Sato et al. [9,10] for tackling the complex singular decom-

position problem, we next give a real form of the problem (2.2). To identify a complex

matrix with a real matrix, we consider the following correspondence. A complex matrix

M = My +iM, € CP*4, where M|, M, € RP*4, has a one-to-one correspondence with a

real matrix

i = [_Aﬁz %?] e R2P*% 2.3)

Let ¢7? denote the isomorphism of this correspondence: ¢P? (M) = M. Define the
following quasi-symplectic set SP(p, ¢g) for integers p, g by

SP(p.q) = {M € ]RZPXZ‘I‘IVIJ(I =J,M with J, = [ 01 Ié’“
—p
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It is easy to verify that a 2p x 2¢ real matrix M has the block form of (2.3) if and only
it M e SP(p, ). On the other hand, the set SP(p, ) is a linear subspace of R?P*24,
Therefore, the complex vector space CP*7 is isomorphic to the linear subspace SP(p, q),
with the isomorphism ¢ (¢, Furthermore, for a complex M € CP*4, one can easily prove
that M € St(p, ¢, C) & ¢P9 (M) € St(2p, 29, R).

Define the map ¢P-% St(p,q,C) as the restriction of ¢(P9 to the complex Stiefel mani-
fold St(p, g, C). Then, this map yields a real expression for St(p, g, C), which is denoted
throughout this paper by

Stp(p, q) == St(2p,2q,R)NSP(p, q). 2.4)

For simplicity, in what follows, we define the symbol ¢ as the collection of ¢7-9) for any
integers p, g as:

dM) =P D (M), M eCP*.

That is, for a complex matrix M of any size, we have

Re(M) Im(M)] ' 25)

¢M) = [—Im(M) Re(M)

We also use the notation M for the matrix ¢ (M), ie., M = ¢ (M), for simplicity. Then,
matrix operations on matrices without and with tilde are related as follows:

¢(M+N)=M+N, ¢ME)=ME, ¢M")y=M", (2.6)

where M, N, E are complex matrices of appropriate sizes for the addition and multiplication
operations. If M e SP(n,n) is nonsingular, then M = ¢_1 (1\7 ) is also nonsingular since
the isomorphism of ¢ together with ¢(M (M) = ¢p(M~'M) = ¢(I,) = b, implies
that M~! = d(M~") € SP(n, n). Additionally, traces of square complex matrices M and
M are related by

2Re(tr(M)) = tr(M), (2.7)
and the Frobenius norm of M and M are connected by
2| M|* = 2Re(tr (M M) = | M. (2.8)

Note that for any M e SP(p,q) and E e SP(q, s), one can easily verify that ME €
SP(p,s), thatis to say, the set SP(, -) is closed under the operations in the right-hand sides
of (2.6).

With above preliminaries, we can rewrite the problem (2.2) on the product of two complex
Stiefel manifolds into its real form by using Stp(n, [) given in (2.4). Define

L 0 0 O
_10 0 L 0 41x4l
T=1o 1, o of€®
0o 0 0 I

and partition P € CHxlin 2.2) as P = [g} with P;, P, € C then by using the

following relation we have
s [P [P
JP J[PJ = [PJ . 2.9)
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Due to (2.7) and (2.9), the objective function f(V, P) = ||[[AV BV]P|]? in (2.2) now can
be rewritten as

1 ~~ ~~  ~
I[AV BVIP|? = S AV BV1JP|>. (2.10)

Throughout this paper we will use the same symbol f to denote the function of (V,P) e
Stp(n, 1) x Stp(21,1) on the right-hand side of (2.10), which leads to the following opti-
mization problem on Stp(n, [) x Stp(2/,1):

C ~ o~ I me = ~
minimize fN(V,NP) = EH[AV BV]JP| 2.11)
subjectto  (V, P) € Stp(n, ) x Stp(2l,1).
For convenience, we define the mapping F : Stp(n, [) x Stp(2/,1) — SP(m,[) by
F(V,P)=[AV BV1JP, (V,P)eStp(n,I) x Stp(2L, ). (2.12)

3 Riemannian Geometry of Stp(n, I) x Stp(2/, )

Riemannian optimization refers to minimizing a function f(x) on a Riemannian manifold
M. A general iteration of Riemannian optimization has the scheme:

Xk1 = R (0xmi),

where «y is the step size at the kth iterate xi, nx € Ty, M is a tangent vector, and where
T, M denotes the tangent space at x on a manifold M, and R is a retraction [11], which is a
smooth map from the tangent bundle of M into M that approximates the exponential map
to the first order. The construction of a conjugate gradient direction in the Euclidean space
is associated with the numerical scheme:

Mie+1 = =V f(xx+1) + Bink- (3.1)

This formula is meaningless for Riemannian manifolds since vectors in different tangent
spaces do not permit the operation of additions. So we have to find a way to transport a
vector from one tangent space to another, that is, the so-called vector transport [11]. The
notion of vector transport 7 on a manifold M, roughly speaking, specifies how to transport
a tangent vector £ from a point x € M to a point R, (1) € M. Given a vector transport, we
can define a Riemannian conjugate gradient direction as follows:

Ni+1 = =V f(xx11) + Bt Togen (i) - (3.2)

According to previous discussions, we known that, in order to apply Riemannian con-
jugate gradient method to the problem (2.11), we need the Riemannian gradient of the
objective function f, together with a retraction and a vector transport on the product manifold
Stp(n, 1) x Stp(21,[). For this purpose, we now study some basic geometric properties of
Stp(n, 1) x Stp(2l, 1), including tangent spaces, Riemannian metrics, orthogonal projections,
retractions, as well as vector transports, and derive an explicit expression of the Riemannian
gradient of the cost function. This is motivated by [9,10,12—14] for applying Riemannian
optimization approaches to solve various kinds of eigenproblems during recent years and the
latest development on Riemannian conjugate gradient methods [15,16]. For the Riemannian
geometry of the real Stiefel manifold St(n, [, R), the reader is referred to [11,17] for more
details.
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3.1 Tangent Spaces and the Orthogonal Projection

Since the tangent space of the complex Stiefel manifold St(n, [, C) at V € St(n, [, C) can
be expresse(’ivas TySt(n,[,C) = {¢ € C*P|gHY + VHg = 0} [11], the tangent space of
Stp(n, ) at V € Stp(n, ) is naturally given by

TyStp(n, 1) = {E € P, 1) [E77 + 77 =0].

And the tangent space T 5, (Stp(n, 1) x Stp(21, 1)) at (V, P) € Stp(n, 1) x Stp(2/, 1) can
be expressed as

T(‘7 ,;)Stp(n, 1) x Stp(2,1) ~ Ty Stp(n, 1) x TpStp(2L,1)
{(5")687’(11 ) x SPQ2L,1) S V+V$—n P—I—PTn—O] (3.3)

[Tt}

where means the equivalent identification of two sets.
We now proceed to develop Stp(n, ) x Stp(2/, 1) with a Riemannian metric. The Euclidean
space R?"*?! is endowed with the standard inner product

(E1, E2) = w(ET Ey), Ey, Ep e R,

When restricted to the linear subspace SP(n, ) of R21x2 o get rid of the factor 2 when
applying the standard inner product directly, we define the inner product on SP(n, [) to be

7 N 1 7T A7 T T
(M, Ny = Su(i" N) = w(M{ Ny + M) Ny)

forany 1 = [ W] 8 = [ N] € SP@.0. Then, the manifold Sip(n, 1

as a submanifold of SP(n,[) is endowed with the induced metric and its induced norm
M2 = (M, M) = %tr(A}Tﬁ) for any M € SP(n, ). Further, the product manifold
Stp(n, ) x Stp(2l,1) can also be viewed as an embedded Riemannian submanifold of
SP(n,l) x SP(2l,1). Thus, it can be endowed with a induced Riemannian metric

- - o 1 g e
(E1,m), G2, ). py = (€1, 8y + (M. m)p = 3 (tr(-’;:] &) + tr(; ?72))

forall (V, P) € Stp(n, 1) x Stp(21,1) and &1, 7). (2. 72) € T 7. ,Stp(n. ) x Stp(21., 1).
Without causing any confusion, in what follows we use (-, -) and || - || to denote the Riemannian
metric on Stp(n, [) x Stp(21, 1) and its induced norm.

The following proposition provides us an alternative characterization of T 5,Stp(n, [) x
Stp(21, 1) which will be used in the sequel of this paper.

Proposition 3.1 Forany (V, P) € Stp(n, 1) x Stp(21, 1), define the set Qi 5, by

Qi 5 = {(Z, %) € SP(.1) x SPQLI) : ; ‘3{; V for some skew-symmetric Wz € SP(n, n), }

for some skew-symmetric Wy € SP(21, 2)

Then T(vyp)Stp(n, D) x Stp(2L,1) = Qi By

Proof Forany (;“ X) € T(v P)Stp(n 1) ><Stp(2l 1), let us define W~ = HVCVT V{ Hv
and Wy = MpxP" — PY"Tp, where [y = I, — 4VVT and Mp = Iy — PP,

and In = [1(;’ ,?1 ] € SP(n,n). Clearly, WZ and W)N( are skew-symmetric matrices and
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(W, Wy) € SP(n,n) x SP(2l,2l). By using the fact that 7V = —V7Z and 77 P =
—PT%,and (V, P) € Stp(n, I) x Stp(2l, [), we have

(W7, Wy P) = (it - Ve Ty ¥, fipz - Py 1iP)
~ leomgp~e e~
=(c—-=vVvlic—_vety, ¥ -
(C ) ¢ 5 ¢ X
=@, -
Therefore, we conclude that T 5,Stp(n, ) x Stp(2,1) C Q2 p).
Conversely, consider (E, X) e W .F) then there exist skew-symmetric matrices WE €
SP(n.n)and Wy € SP(2,2l) such that ({, ¥) = (W;V, Wy P). Note that
TV 4 VT = (W) T 4 VT WiV = VT WV 4 7727 =0,
TP+ Py = (W;ﬁ)Tﬁ—i- ﬁTﬁ};ﬁ = —ﬁTW;ﬁ+ FTW;F =0.
Thus, we have that Q(V,ﬁ) C T(v’ﬁ)Stp(n, ) x Stp(21, 1), which completes the proof. O
We now derive the orthogonal projection of any (1\71 Y ) € SP(n,l) x SP(2l,1) onto
Ty p,Stp(n, 1) x Stp(21, 1).

Proposition 3.2 Forany (M, N) € SP(n, 1) x SP(2l,1)and (V, P) € Stp(n, 1) x Stp(21, 1),
the orthogonal projection operator P i; 5 onto the tangent space T 7 5\ Stp(n, 1) x Stp(21, 1)
is given by
P 5) (M. N) = (Py (D). PE(N)), (3.4)

where

P{;(lrl) =M-V sym(VTM),

P5(N) = N — P sym(PTN). (3.5)
Proof Notice that the linear subspaces SP(n, [) and SP(21, [) is closed under the operations
in the right-hand sides of (2.6), due to the right-hand sides of (3.5), it is easy to verify that
Py 5)(M,N) € SP(E, l)~x SZ?(2I, 12 o

From the fact that VTV = I; and PT P = I}, we have

Py (D T + V1) = (§ — Vsym(@7 i) ¥+ V7 (51 — Vsym(@7 i) = 0,
PH) B+ FP5(N) = (N~ Bym(PT W) P+ 7 (§ — Psym(PT ) = 0.

which implies Py, 5(M,N) € Ty p,Stp(n.1) x Stp(2l,1). On the other hand, for any
.7 e Ty p,Stp(n. 1) x Stp(21, 1),

el R

(7. ) — Py (1, B, @ ) = 31r (47— Py(D)"E) + 5o (N — () 7)

~ o~~~ 1 ~ o~ o~
= S (sym(vTM)st) + 5 (sym(PTN)PT;,‘)
= O’

where in the last equality we have used the fact that the trace of the product of symmetric
and skew-symmetric matrices is zero. The proof is thus complete. O
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3.2 A Retraction and a Vector Transport as the Differentiated Retraction

In this subsection we discuss a retraction and a vector transport on Stp(n, 1) x Stp(2/, I), which
is qulte critical to Riemannian optimization for the problem (2.11). For a given search direc-
tion (5 n) € T(V P)Stp(n ) x Stp(21,1) atacurrentpomt (V P) € Stp(n, 1) x Stp(ZZ l),a
search should be performed on a curve emanating from (V, P) in the direction of (€, 7). For
this purpose, it is necessary to find a retraction on the product manifold Stp(n, [) x Stp(2/, [)
in question, which is a map from T(V P)Stp(n ) x Stp(21,1) to Stp(n, I) x Stp(2L,1).

In this paper, we adapt the Cayley transform for our retraction which is studied by [15].
The Cayley transform is a mapping between skew-symmetric matrices and special orthogonal
matrices. Let W be any n x n real skew-symmetric matrix. Then I, — W is invertible. For
any X € R"* and any « € R, the matrix Y given in the following closed form:

Y=0X and Q= (In - %W)_l (In + %W)

is known as the Cayley transform [15]. Using the skew-symmetry of W and (I —M)(I+M) =
(I + M)(I — M) for any square matrix M, one can easily prove that Y7Y = X7 X, which
implies that ¥ preserves the same constrains as X.

From Proposition 3.1, for anyg € TyStp(n, 1), itholdsg = VT’EV, where Wg = ﬁ;EVT—
VET I i is a skew-symmetric matrix, and y| 7= 7,; — % V VT . This leads to a retraction based
on the Cayley transform on the manifold Stp(#n, /) of the form

Ry(@h) = (T, - %Wg)_] (T +5W) 7. (3.6)

for any &« € R. It can be shown from [15] that the curve I'(a) = Rv(ag) is contained
in Stp(n, [), and satisfies I'(0) = V and o) = ng; = E In a similar manner, for any
77 € TpStp(21, 1), we can derive a retraction based on the Cayley transform on the manifold
Stp(21, 1) of the form

~ o ~\—1l /~ o ~ ~
Rp@i) = (b= 5Ws) (B +5W;) P, (3.7)

where 7 = W;P, and Wy = T15PT — Pi' Tl with T3 = Ty — $PP". Therefore, a
retraction R on the product manifold Stp(n, ) x Stp(2/, [) is immediately defined as

Ry 5@E. M) = (Ry@f), Rp@i) (3.8)

where (V, P) € Stp(n, 1) x Stp(2, 1) and (£, 7) € T i 5,(Stp(n, [) x Stp(21, 1)).

Noting that the matrix inverse (7,, - ¢ WF)_I dominates the computation of R{;(ozg) in
(3.6). To overcome this difficulty, accordmg to techmque of [15], we can obtam a refined
scheme by the following procedure. Rewriting Wé € SP(n,n) C R a5 Wg = Ug v,

where U = [Hvé V] e RZ*4 and Vg = [V va’] € RZ*4 then apply the Sherman—
Morrison—Woodbury(SMW) formula

~ o ~ -1 ~ o -1 ~ o 5 a_r - -1 T
(h-5W) =(L-3uv) =L+3u:(m-3VUs) V' (9
we can derive the following refined scheme

-1 ~
SViug) VT (3.10)

Rq(ozg) =V +otUg (141 -3 t
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R4l x4l

Apparently, if | < n/2, inverting Iy — V~ Uz € is much easier than inverting

7 — QWE R%">2" hence (3.10) should be used to compute Rv(ag) However, ifl > n/2,
then (3 10) has no advantage over (3.6), if this is the case, we still use (3. 6) to compute
Ry (ozé) We also note that there is no need to refine R 5 («7) in (3.7) because 121 -2 W,,
RAX4 byt 5 € RYX2,

Remark 3.1 According to the refined formula (3.10), we can form the partition matrix
1 TE 7
5>V E I j|
VIUr=| == 3~ |,
£78 [—sTs+§(s Ve —3V7E
and then calculate

_yrge [ B-§VTE S 1
% Uf_[‘a’sTs 2 ETTHTTE Iz+‘3iVT€]'

By using the following inverse formula of 2-by-2 block matrix

A Bl —(C - DB 'A)"' DB (C— DB 14)~!
C D| ~|B'+B'A(C-DB'A)'DB"! —B7'A(C-DB'A)"!

where A € R"™*" B ¢ R™*™ jg jnvertible, C € R, D € R" and C — DB~ A is
invertible, we have that, if

A~ 30 ~p~ ~r~ 2 ~ U~p~ o~ O~
N= EE-—CE"VHVTOH+ =T+ VIHUT - VT e R
2 8 o 4 4
is invertible, then (14 — %VET U;,’;)_1 can be expressed as

2N NI+ 4VTE) N
o
1

1
e7 + 2<11 VT?E)N "I+ 9VTE) 2T - VTE)N—I]

Then we can further refine the computation of Rv(a?) for the case [ < n/2 as follows

Ro(@f) =V +alU ZNilNgz N I (3.11)
ylag) =V +aly 1 2 A3 a—1 LartT | s .
=90+ % NINTINZ -INEN —3 N}

YT -1
Iy — ZVE Up) —[

~ e T
whereN~ = VTE, N =7+¢ N1 N3 = 11—%N51 and N = %ng—%Ngl N§+§N§N§.
We observe from (3.1 1) that we only need to inverse N € R?*? and there will be no high

computational costs for computing (3.11) if we store the matrices Né, N§ and N»g after E is

obtained.

We use the differentiated retraction as a vector transport e (E, %) on Stp(n,l) x
Stp(21, 1), defined as

Tz 5.3 = (TQ). (D) = DRy @[] DREIXD
d ~ o~
= (ERV(E +18) 0’

d
— Rz +tX ‘ ,
dt POI+10 t:O)

for (€, %), (, %) € T 5,(Stp(n, 1) x Stp(2/,1)). Consequently, we have
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T,emE M = (T,zE). Toz(N) = (DRy(@E)[E]. DR
d ~ d
- (ER;(@)‘I:&, ERF(I?{)‘[:O). (3.12)

Asin [16], we can derive computational formulas for the vector transport as the differentiated
retraction of (3.6) and (3.7) by

~ d_ o~ o~ IO PO LU SV IV
TE(():ERV(S‘FIC)L:O: <In_§Wg> WZ <In—§Wg) \%
and
- d -~ ~ 1~\"'~ [~ ~ N\l o
GO0 = Rp(1+ tx)‘t:0 = <121 - 5W5> Wy (121 - —Wg) P.
Therefore, we have
~ ~ oA~ \"2 ~ ~ ~ oA~ \ 2~
7@ = (L -3W) "WV = (1, -5W) & (3.13)
and
~ oA~ \2 ~ ~ ~ o~ \—2_
T = (T = S W) WP = (= SW5) 0 (3.14)

Following from Lemma 2 in [16], we have that the vector transport formulas given by
(3.12), (3.13) and (3.14) satisfy the following Ring-Wirth nonexpansive condition

(Toem € M. TemE M)

=y (e 5m) " (- 57) )

s (i (Tr+ 50) " (- 5) )
;n<ET<E-—ff"§>_2§>4—;H(WT<By—ffﬁ§>_aﬁ>

(€M, E.D), (3.15)

where the last inequality makes use of the fact that both Wg and VTfﬁ are skew-symmetric,

IA

. . . . . ~ 25
implying that their eigenvalues are zeros or pure imaginary numbers, and therefore 7, — "‘T W»§

and Tzl - "2—2 VT’% are both symmetric matrices with all eigenvalues not less than 1.

For refining the computation of (3.13) for the case [ <« n/2, as in [16], applying again the
SMW formula (3.9), we can obtain the following refined scheme
B = U (4 2t _82)‘123
T,z ¢) = U (ME + 2M§M§ + > <I41 2M§ MEM&‘)’ (3.16)
where Mg1 = VET v, Mgz = VgT U and M§ = (Iy — %VET Ug)’l VgT V. One may refer to [16]
for the details of derivations. We should observe that there will be no high computational

costs for computing (3.12) if we store the matrices Mgl, Mgz and M§ after computing (3.10).

For the case [ > n/2, we still use (3.13) to compute the vector transport 7;5(’5). Similar to
R p(a7), there is no reason to refine the computation of 75 (%) and we still use (3.14) to
compute it.
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3.3 Riemannian Gradient

We now derive explicit expression of the Riemannian gradient of the cost function f (‘7, IN’)
defined in (2.11). To @ so, we define the mapping F : SP(n,l) x SPQ2l,1) — SP(m,I)
and the cost function f : SP(n,l) x SP(2l,1) — Rby

F(V,P):=[AV BV]JP and F(V,P):= %HF(V, P2, (V,P)eSPm, 1) x SPQLI).
(3.17)

Thus, the mapping F defined in (2.12) and the cost function f (V, P) are the restrictions of F
and f onto Stp(n, 1) x Stp(2/,1). Thatis, F = Fsip,1)xSwps.)) and f = flspen,1)xSipLi)-
The Euclidean gradient of f at a point (V P) e SP(n,l) x SP(21,1) is given by

— o~ o~ )
gfadf(V,P)Z(a FW, Py, ~f(V P))

By a simple computation, we have

~T
TV, P = [ATF(V P BTF(V, P)} [il } O FT. P = JTIAV BVITET, P).
2

(3.18)

Lemma3.1 (p.48of [11]) Leth be a smooth function defined on a Riemannian manifold M
and let h denote the restriction of h to a Riemannian submanifold M. The gradient of h is
equal to the projection of the gradient of h onto T, M, that is, grad h(x) = P (grad h(x)).

Since Stp(n, [) x Stp(21, 1) is a Riemannian submanifold of SP(n, [) x SPQZ,D endowed
with the induced metric. Applying Lemma 3.1, the Riemannian gradient of f(V, P) atapoint
(V, P) € Stp(n, I) x Stp(21,1) is given by

~ ~ o~ o~ 0 — ~ ~ 0 — ~ ~
gradf(V,P):P(g,F)(gmdeP) <P (WfVP> (—ﬁfVP>). (3.19)

Following from Proposition 3.2, we have

Py (i?(? ﬁ)) =[ATF@.P) BTF(V.P)] F’J;]
VeV’ ’ ’ P}
— Vsym <\7T [ZTF(V, P) BT F(V, F)] [I;IT]) (3.20)
2
P (55 TV, P)) = STIAT BVV F(T, P)— Poym (PTITIAY BOV (7, P)).

Together with (3.18) and the map ¢~ ! we can derive the first-order optimality conditions
of the problem (2.2) as follows.

Corollary 3.1 Suppose that (V*, P*) is a local minimizer of the problem (2.2). Then (V*, P*)
satisfies the following first-order optimality conditions:

*xH
[AH[AV* BV*1P* BH[AV* BV*]P*] [il*,,]
2
_y* ([AH[AV* BV*1P* BH[AV* BV*]P*] [PI*HD VE =0
Pyt '
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[AV* BV H[AV* BV P* — P*([AV* BV H[AV* BV*]P*)HP* -
viHys =, pHp* =, (3.21)
where P* = [g] with P{', P} € Clx,
Proof The Lagrangian function of the problem (2.11) is given by
L:=LV,P,A, Q) =F(V,P)— %tr(K(Wfi -1 - %tr(ﬁ(ﬁTﬁ )

where f = 7(\7, }N’) is defined in (3.17) and X, Qe SP(l, 1) are symmetric matrices repre-
senting the Lagrange multipliers. The Lagrangian function leads to the first order optimality
conditions for the problem (2.11):

d

f=

>2
“UZ
Ot

~ 9

~f—VA=0, —<C

1% oP
9

r =0, L=

1o

L =0,

\\

3
Y
TP _T =0, (3.22)

I

<! ®
<z

’Q‘Z

~uz

L

[o3] [o5)
>z\ @ <z\ @

where w f and f are given in (3.18). From the first two equations in (3.22), we have
A= VT 57 f and Q=rT 38p f. Since A and € must be symmetric matrices, we obtain

A= %?T Vand Q = %?T P. Then the first-order optimality conditions of the problem
(2.11) in the Euclidean sense satisty

T ~g o~ ~g o~

o 0 — ~ 0 " ~ ~ ~
—F—-V—sf V=0, — P=0, VIv=1, PTP=1. 323
8Vf BVf Pf 8Pf ] 7. (3.23)

By using the map ¢!, the first-order optimality conditions of the problem (2.2) can be
expressed as (3.21). O

Next, we establish explicit formulas for the differential of F (\7, }N’) defined in (2.12)
and the definition of pullback mappings which will be used in the sequel. For any given
(V, P) € Stp(n, 1) x Stp(21, 1) and (§,7) € T(gﬁﬁ)Stp(n, ) x Stp(21, 1), we obtain

F(V+1tE,P+1)—F(V,P)=[A(V +1&) B(V+1E))J(P+17) —[AV BV]JP
= (IAV BV]+1[AE BE])J(P +17)—[AV BVIJP
= t[A€ BEIJP +1[AV BV1J7j+*[AZ BEJT

Since F is a smooth mapping between two linear manifolds SP(n, 1) x SP(2,1) and

SP(m,l), and F is the restriction of F to an embedded Riemannizgl sgbmanifold Stp(n, I) x

Stp(2L, 1) of SP(n,1) x SP(2L,1). Hence, the differential DF(V, P) : T i 5, Stp(n, 1) x

Stp2l.1) — Ty 5SP(m. 1) ~ SP(m.I) (see p. 38 of [11]) of F(V, P) at a point

(V, P) € Stp(n, I) x Stp(21, 1) is determined by

DF(V, P)IE, )] = DF(V, P)IE.7)] =[AE BEIJP +[AV BVIJ7i. (324)
for any (E, M € T(‘7, ﬁ)Stp(n, [) x Stp(21,1). Moreover, for the Riemannian gradient of

f (\7, IN’) and the differential of F (‘7, ﬁ), we have the following relationship (see p. 185 of
(11D

grad f(V, P) = (DF(V, P))*[F(V, P)], (3.25)
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where (DF(\7, F))* denotes the adjoint of the operator DF(\7, F).

Let TStp(n, 1) x Stp(2l,1) denote the tangent bundle of Stp(n,l) x Stp(2l,1). As in
p-55 of [11], the pullback mappings F : TStp(n,l) x Stp(2l,1) — SP(m,l) and f :
TStp(n, 1) x Stp(2l,1) — R of F and f through the retraction R on Stp(n, ) x Stp(21, 1)
can be defined by

FE, 7 =F®RE D) and fE M= FRE M), (3.26)

fgr all (E, 7) € TStp(n, 1) x Stp(21, 1), where 1’7\(‘7’ 7 and EV, p) are the restrictions of F and
fto T(‘7’13)Stp(n, ) x Stp(21, 1), respectively. Moreover, we have (see p. 55 of [11])

DF(V,P)=DF 5,05 ). (V.P)eStpn.1) x Stp(2L, 1), (3.27)

where 0§ ) is the origin of T i 5 Stp(n, [) x Stp(2}l\, [). For the Riemannian gradient of
f and the Euclidean gradient of its pullback function f, we have (see p. 56 of [11])

grad f(V, P) = grad fi7 5,077 7)) (3.28)

4 A Riemannian Conjugate Gradient Algorithm

Recently, a few Riemannian optimization methods for solving eigenproblems have been
proposed. For instance, in [18], a truncated conjugate gradient method was presented for
the symmetric generalized eigenvalue problem. In [19], a Riemannian trust-region method
was proposed for the symmetric generalized eigenproblem. In [20], a Riemannian New-
ton method was proposed for a kind of a nonlinear eigenvalue problem. In particular, in
[12], Zhao, Jin and Bai presented a geometric Polak—Ribiere—Polyak-based nonlinear con-
jugate gradient method for the inverse eigenvalue problem of reconstructing a stochastic
matrix from the given spectrum data. In [13], Yao, Bai, Zhao and Ching proposed a Rieman-
nian Fletcher—Reeves conjugate gradient method for the construction of a doubly stochastic
matrix with the prescribed spectrum. In [14], Sato and Iwai presented a Riemannian conju-
gate gradient method for the problem of the singular value decomposition of a matrix. The
complex singular value decomposition problem were also considered by Sato and Iwai [9]
and Sato [10] based on a Riemannian Newton method and a Riemannian conjugate gradient
method, respectively.

Very recently, in [16], Zhu developed a new Riemannian conjugate gradient method for
optimization on the Stiefel manifold, which generalized Dai’s nonmonotone conjugate gra-
dient method [7] from the Euclidean space to Riemannian manifolds. The author in [16]
introduced two novel vector transports associated with the retraction constructed by the
Cayley transform [15]. The first one is the differentiated retraction of the Cayley transform
and the second one approximates the differentiated matrix exponential by the Cayley trans-
form.

In this section, inspired by the work of [7,16], we present a Riemannian nonmonotone
conjugate gradient method with nonmonotone line search technique for solving the problem
(2.11). We show the global convergence for the proposed algorithm, whose analytic frame-
work can be regarded as an extension of the proof proposed in [7,16]. In addition, to make the
algorithm easy-to-perform, we translate the algorithm into the complex-value form. Finally,
we provide a complete algorithm for the original problem (1.3) in the end of this section,
which is to find a minimal perturbation for the pencil to have / eigenpairs with 1 </ < n.
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4.1 A Riemannian Conjugate Gradient Method for the Problem (2.11)

In Dai’s nonmonotone conjugate gradient method [7], the parameter S+ in (3.1) is given
by

IV f )12
maX{ykTr]k, ~V o))

Br+1 =
where yx = V f(xk+1) — V f(xx). Aiming at the problem (2.11), the Riemannian general-
ization of this formula is given by

llgrad f (VEF!, PRHD))2
max { Vi1, —(gradf (VK P), (&, 50))}

where Yiy1 = (grad f (VEHL, PR T 2 o (& i) — (grad f (VE, PX), (& k). Dai’s
algorithm is globally convergent with a nonmonotone line search condition. The Riemannian
generalization of this nonmonotone condition is

F R pry (o B 7)) < max{f(VE, PF), ... f(VEhB) pr=hdy)
+ Say (grad £ (VE, PR, (&, Tn)).

On the basis of these arrangements, the corresponding Riemannian nonmonotone conjugate
gradient method for the problem (2.11) is described as follows.

Br+1 =

Algorithm 4.1 A Riemannian nonmonotone conjugate gradient method for the problem
(2.11)

Require: (V°, PO) e Stp(n, 1) x Stp(2L, 1), (&, 7o) = —grad f(V0, P%). ¢,8, p € (0, 1),
h e Nt apmax > @0 > amin > 0. k := 0.

1: while ||grad f (V¥, P¥)|| > € do

2:  Compute the least non-negative integer s such that the steplength «y = oy p* satisfies

R oy (@G 1)) ~ o
< max{f(VK, Pk, ..., f(VE® | Pk=h@Oy) 4 Soy (grad £ (VE, PR), (&, 1)),

4.1)
Wherg h(k) = min(h — 1, k) and g denotes the initial steplength at iteration k.
3 Set (VAFL PEHD) = R ey (o (B, ).
: Compute
Eerr ) = —grad f (VI P 4 B T 2 o Bl li) (42)
and
Yerr = (grad f (VEFL PEFY T o o B T0) — (grad f(VE, PY), & )
4.3)

where Biy1 € (0, B2.,) with

b llgrad f (VA+1, pk+1))2
= S — . 4.4
Pick max {Yiy1, —(gradf(VK, PK), (&, M)} @4

5:  Update @x+1 € (min, @max) and setk <—k + 1.
6: end while
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We have several remarks for the above algorithm as follows.

Remark 4.1 In Algorithm 4.1, the initial steplength at the kth iteration is set to be .
\i/e now derive a reasonable choice of this initial steplength. For the nonlinear mapping
F(gk’ﬁk)(é, m T(kaf,k)Stp(n, l)Ax Stp(21,1) — SP(m,[) defined in (3.26), we consider
the first-order approximation of F({« px at the origin Oy« px, along the search direction
(k. Mk):

Fipe iy (@G, 710) ~ Fee ey Ogipe i) + @D F e oy O i) (G L. (4.5)
for all  close to 0. From (3.26) and (3.27), this is reduced to

F(Ree_pry (@G, T10))) ~ F(VE, PY) + aDF(VE, PO, i),

for all « close to 0. From (3.26) and (4.5), we have

- ~ 1 ~ ~
T oy @G T0) = 31 iy (B )P
L= IR S S . ~ o~ g2
~ EHF(Vk,Pk)(O(Vk,Pk))” +§C( ”DF(Vk’Pk)(O(Vk,Pk))[(%-kv le)]”
+0l<(Dﬁ(§k,i)’k)(O(Vk’i)'k)))*[ﬁ(ﬁk’i)’k)(o(ﬁk,ﬁk))], &, ﬁk)>~

where (Df‘(ﬁk"ﬁk)(o(f/'k’ﬁk)))* denotes the adjoint of the operator Df‘(f/’k’ﬁk)(o(ﬁk,'ﬁk)).
Based on (3.26) and (3.27), this yields

F (R, (@i i)
~ f(VE, PR+ a((DF(VE, PY)*[F(VF, PY], G, )
1, Tk Bk\IE 2
+ e IDF(VE POIG ol (4.6)

Fiom (3.25), we obtain the local approximation of f (V, F) at (Vk, pk ) along the direction
(&, ) as follows:

~ o~ ~ o~ o~ 1 ~ o~ o~
gk(@) = f(VE, P*) + a(grad f(VE, PR), &, 7)) + EaanF(V’% PO, T2
Let ¢, (o) = 0, we arrive at

(grad f (V¥, PY), (e, 7)) + @ DF(VE, POIG i0lI” =
Then we have
(gradf (V5 PY). & 7))
IDFVE, POk, 011>
Hence, from (3.24), we derive a suitable choice of the initial steplength as

o Meradf(VE PR, G o)l
T NAVE BVAIIR + [AZ BE&1J A

4.7

Remark 4.2 Similar to unconstrained optimization in the Euclidean space, ||grad f (Vk, Pky I
< € for some constant € > 0 is a reasonable stopping criterion for Riemannian optimization
approaches to the problem (2.11). In fact, under the conditions VTV = Il and PTP = Il
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53‘75 = 0 and ajﬁﬁ = 0 in the proof of Corollary 3.1 are equivalent to gradf(V, P) =0,
since it follows from (3.19), (3.20), (3.22) and (3.23) that

9 — ~ 1=~ ~ 0

Pi(—~Ff)=—-=-VV - V—

V<avf) =3 )<avf v

Pi( i =7) =0 L5pr (5 "5 52 7TF)—(1~ Lppr) 2

P\oP ) op’ ~ op’ )T TN GF

Thus, first-order critical points in the Euclidean sense can be interpreted as stationary points
in the Riemannian sense.

4.2 Global Convergence

In this subsection we study the convergence of Algorithm 4.1. Note that the convergence of
the nonlinear conjugate gradient method with nonmonotone line search technique for uncon-
straint optimization has been well studied in the literature [7]. Considering that the problem
(2.11) is a model with matrix variables while most of the nonmonotone CG-type literature is
in the context of vectors, and to make the paper self-contained, we here provide more details
about the convergence analysis of Algorithm 4.1 in solving the problem (2.2) for the purpose
of completeness. The following analytic framework can be regarded as an extension of the
proof proposed in [7,16]. In particular, the author in [16] generalized Dai’s nonmonotone
conjugate gradient method [7] from the Euclidean space to Riemannian manifold, while here
we further extend to the Riemannian product manifolds, which appears to be more general.

Lemma 4.1 For any point (VO, }3’0) € Stp(n, 1) x Stp(2l, 1), the level set
®:={(V, P) € Sip(n, 1) x Sip2, DI f(V, P) < f(V°, PO} (4.8)
is compact.

The proof to Lemma 4.1 can be found in “Appendix 7.1”. The following remark shows
some basic properties of the involved product manifold Stp(n, [) x Stp(/, [), and will provide
the transparency in our coming convergence analysis.

Remark 4.3 One can see that Stp(n, [) x Stp(l, [) is an embedded Riemannian submanifold of
SP(n,l)xSP(2l,1). We may rely on the natural inclusion T(V P)Stp(n, 1) xStp(21,1). Thus,

the Riemannian gradient grad f (V, P) can be viewed as a continuous nonlinear mapping
between Stp(n, I) x Stp(l, 1) and SP(n,[) x SP(2l,1). Since ® is a compact set, then there
exists a constant y > 0 such that

lgradf(V, P)|| <7, Y(V,P) e . (4.9)

Moreover for any pomt (V], P1) (Vz, Pg) e Stp(n,l) x Stp(2l 1), the operatlon grad
f(Vl, Pl) — gradf(Vz, P2) is meaningful since both gradf(Vl, Pl) and gradf(Vz, Pz) can
be treated as vectors in SP(n,l) x SP(2l,1). Since ® is compact, then grad f (V P) is
Lipschitz continuous on @, i.e., there exists a constant L > 0 such that

lgrad f (V1. Py) — grad f (Va, Py)|| < Ldist(V1, Py) — (Va, Py)), V(V. P) € ®(4.10)
for all (\71, Igl), (Vz, Fz) € ® C Stp(n, 1) x Stp(2l, [), where “dist” defines the Riemannian
distance on Stp(n, ) x Stp(21,1).
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The following lemmas show some properties of the nonmonotone line search. Their proofs
can be found in “Appendix 7.2 and 7.3” respectively. Lemma 4.2 shows that Algorithm 4.1
produces a descent direction at each iteration. Lemma 4.3 shows that for Algorithm 4.1 using
the technique the nonmonotone line search, the function need not decrease at every iteration,
but there must be a reduction in the function every i — 1 iterations.

Lemma 4.2 Suppose Algorithm 4.1 does not terminate in finitely many iterations. Then we
have, for all k,

(gradf (V¥, P*), &, 7)) < 0. .11
Therefore 181?+1 > 0 and Pr+1 € [0, ﬁ,?H] is well defined.
Lemma 4.3 There exists a positive constant i > 0 for Algorithm 4.1 such that

(gradf(V*, PY), (. iiv))
I G 7012

where o denotes the initial step length at iteration k. Further, we have

> min {_ahj+i72 <gmd FOVMH2 PR (@, ?)th+i72)>} < Ho0.

i=l,..,

Qi > min {5k, -

} , forallk, (4.12)

4.13)

We now establish the global convergence of Algorithm 4.1 by the idea of the proof of
Theorem 3.4 of [7] and Theorem 1 of [16]. The proof can be found in “Appendix 7.4”.

Theorem 4.1_Suppose Algorithm 4.1 does not terminate in finitely many iterations. Then the
sequence {(V¥, P*)} generated by Algorithm 4.1 converges in the sense that

lim inf || grad f (V*, P¥)|| = 0. (4.14)
k—o00

Hence there exists at least one accumulation point which is a first-order critical point.

4.3 A Riemannian Conjugate Gradient Method for the Problem (2.2)

In the implementation of Algorithm 4.1, as we can observe from (2.5), treating matrices on
Stp(n, 1) needs twice as much computer memory as those on St(n, [, C). Also, addition and
multiplication of matrices on Stp(n, /) need about twice as much computation time as those on
St(n, I, C). To avoid these difficulties, through the map ¢_1, we now translate Algorithm 4.1
for the problem (2.11) into Riemannian conjugate gradient method for the problem (2.2) on
St(n, 1, C) x St(21,1, C).

In the process of translation, the relations (2.6) are used, together with the relation for
EeC™ and E = ¢(E) € SP(, 1),

= FT H
sym(E) = E+E _ ETET _ her(E),
2 2

where her(-) denotes the Hermitian part of the matrix in the parentheses. Further, by using the
relationships between matrix operations on Stp(n, [) x Stp(2/, [) and St(n, I, C) xSt(21, I, C),
the retraction R given in (3.8) on Stp(n, [) x Stp(2l, 1) correspond to the retraction RC on
St(n, 1, C) x St(21, 1, C) defined by

R py @ m) = (RY @), Rf@n) *.15)
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where

(V.P)€Stn,1,C) x St(21,1,C), (£.n) € T(v.pSt(n.1,C) x St(21,1,C)

and
C o -1 o
RE (8) = (1,, - EWE) (1,1 + §W§) v,
C a -1 a
RE@n) = (1= 5Wy) (Lot 5 W) P. (4.16)
with
1
We = yevH —vellmy, I'IV:IH—EVVH 4.17)
and
1
W, = lpnP" — PpfTip, l'Ip:IQl—EPPH. (4.18)

Similarly, the vector transport 7 given in (3.12) on Stp(n, [) x Stp(2[, ) correspond to the
retraction 7C on St(n, 1, C) x St(21, [, C) defined by

Tl E ) = (T ). TS () 4.19)
where
) -2
Ti® = (Li—5We) & T =(i—35W,) n (420)

Thus, Algorithm 4.1 is translated to Algorithm 4.2 for the problem (2.2), which provides
a Riemannian conjugate gradient method for the problem (2.2). Here, we use the notation
(Ex. M) to express ¢~ (grad f (V. PY)).

Algorithm 4.2 A Riemannian nonmonotone conjugate gradient method to the problem (2.2)
Require: (V0, PO) € St(n,1,C) x St(21,1,C). €,8,p € (0,1), h € NT. apax > @ >
Omin > 0.k :=0.
D0 0 _ [P with pO pO o ixi
1: Partition P” by P" = [Pé)] with P, P,’ € C™*'. Compute

0H
Sy.o= [AH[AVO BVO1PY BH[AVO BVO]PO] [IIZ{)H], Spo=[AV® BVO1H[av0 ByO1pPO.
2

Set (£9.7p) = (Sv,0 — Vher(VO Sy o), Sp.o — P’her(P" Sp o)) and (£, 7m0) =
— (&0, M9)-
2: while [| (&, 7| > € do
3:  Compute the least non-negative integer s such that the steplength oy = oy p* satisfies
I (RS ey (kG i) )
< max { £(VE, PR, .., fVREI0, PREH ) 5o (TrE] ) + Tri o)),
where h(k) = min(h — 1, k).
4:  Compute the next iterate (VF+!, pk+ly .= R(Cvk iy @k (Ek, 7)), where RC is the
retraction on St(n, [, C) x St(21, 1, C) defined in (4.15)—(4.18).
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s
5:  Partition PK+! by P+l = [i}(“] with P!, ps+! e €. Compute
>

k+1H
_ [ aH| A yk+] k+17pk+1  pHpayk+l k+1ypk+1] | P1
Sv,kH_[A [AVK+] gyk+l pk+l gH{Ayk+l pyk+l|p ][Pk+lH]’
2

Spg1 = [AVKHD pyktlH[Ayk+] pyktlypht]

and compute

= — H H
Gt Ties) = (v =V Ther (VA sy ) Sp et = PR her (PR s 1)

6:  Compute
Erts M) = —=Eats M) + Ber1 Ty g o € 10

where 7 is the vector transport on St(n, [, C) x St(21, 1, C) defined in (4.19)—(4.20),
and Biy1 € (0, BZ,) with

_ Tr(E,f'HEH]) + Te@y 1)
max {TrE T8y, (60) + el T, (00) — (TeE 60 + TeGifl ). — (TeE &) + Teif no) |

D
B

7. Update ox+1 € (¥min, ®¥max) and setk <« k + 1.
8: end while

Remark 4.4 In the implementation of Algorithm 4.2, if | < n/2, according to (3.10), the
computation of V;, in (4.16) is replaced by its refined scheme

(075 -1
Ry (exe) =V + U, (121 -3V Uék) Vel vE,

where U, = (Tye&g, V) € €% and Vg, = (VK, —Tlyi&) € €2 Similarly, if
| <« n/2, according to (3.16), the computation of 7;%,( (&) in (4.20) is replaced by

C ey _ 1, % 2,3 | %% o o\ o3
Zxkék (Er) = Ug, <Mék + TMEI\' Mék + B (121 - 7M$k> MEkMEI\) ’

where My, = VI VE, ME = Vil Ug, and Mg = (I — 5 Vgl Ug) VI VE.
4.4 An Algorithm for Solving the Problem (1.3)

Since our ultimate goal is to find an optimal pencil (A, B) with minimal perturbation in the
problem (1.3) in the sense that (A, B) has [ distinct eigenvalues. In this subsection, we first
review roughly how to obtain such an optimal pencil once the optimization problem (2.2)
is solved, one may refer to pages 781-782 in [2] for more details, and then we present a
complete algorithm for the problem (1.3). According to the Proofs of Theorems 1 and 4 and
pages 781-782 in [2], such a pencil can be obtained by the following procedure.

Let V¥ € C! with V*#V* = I and P* = [}1] with P{, P} € T and PP Py +

PZ
Pz*HPz* = I; solve (2.2), i.e.,

vec vHy =,
(V*, Pf, Pf) = argmin { ||[AV P, + BV P,||* : P, P, € C'¥, . (42D
PP + PP, =1
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If P} is nonsingular, let

Pf 0y

! and Vo=[V* W
G mavomwew

be unitary matrices. If P; is singular, then as in page 781 of [2], we can construct [ﬁg] such

that P + A Py is nonsingular and |[[A B]||| [ig

P/ := P/ 4+ APy and P; := P; + AP,. Moreover, since P|" is nonsingular, it follows from
the cosine-sine decomposition that Q5 is also nonsingular. Then define

]|| < ¢ for € being small enough, then set

_ 1 _
Ao =071, Ao=2no0l, BSY =[AV* BV [g;] Ay

and
A=1B"no aWIV{, B =[B" BWIV/.

If all eigenvalues of Ag are distinct and rank(Bo) = n, then (A, l§) is the minimum perturbed
pair of (A, B) that has [ linearly independent eigenvectors. If all eigenvalues of Ag are not
distinct, according to [2], we can also compute A Ag such that all eigenvalues of Ag + AAg
are distinct and IIBél) IIAAp| < €, and then set Ag := Ag + AAg. Besides, let the spectral
decomposition of Ay be

Ag=K Kt
Al

and

[vi ---VI]ZVO[’S].

Then {(Ax, Vk), k =1, ..., 1} are [ linearly independent eigenpairs of pencil A —AB.
From the above arguments, we now derive Algorithm 4.3 for solving the problem (1.3),
which is to find a minimal perturbation for the pencil to have / eigenpairs with 1 </ < n.

Algorithm 4.3 Algorithm of solving the problem (1.3) via Algorithm 4.2

Require: A, B € C"*""(m > n).

1: Implement Algorithm 4.2 and set the generated optimal solution of problem (2.2) by
(V*, P*). Partition P* by P* = [[i| with Pf, P} e C*.

2: Compute the full complex QR decomposition of [21] and V* to obtain Q1, Q> € C¥!
and W e C"*("=D gych that [ﬁg g;] and Vo = [V* W] are unitary.
3 Compute Ag = 077, Ao = Mg 01! and B = [AV* BV*I[5!]a7".

4: Compute A = [BS" Ag AWV and B = [B" BWIV{.
5: Compute the spectral decomposition of A to obtain /C, A = diag(A1, ..., A;) such that

Ao = KAK™!. Compute Vj I:O(n}—CI)XI

6: Output (A, B, {(Ak, vi)}:_,), which is an optimal solution to the problem (1.3).

] and partition it as V) [0<nl—cz>xz] =[v; --- v].
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5 Numerical Experiments

In this section, we report some numerical results to illustrate the efficiency of the proposed
algorithms. Because we focus on finding an optimal pencil (A, f?) in the problem (1.3) in
the sense that (A, 1§) has [ distinct eigenvalues with 1 < [ < n, in the first part we shall
numerically compare Algorithm 4.3 with Boutry et al.’s algorithm [1] for the case | = 1,
which is denoted by BEGM algorithm, and Ito and Murota’s algorithm [5] for the case / = n,
which is denoted by TLS-IM algorithm. In the second part we show more numerical results
of Algorithm 4.2 in comparison with some other forms of Riemannian conjugate gradient
methods proposed in [12—-14] which are all applicable to the problem (2.2). All the numerical
experiments were completed on a personal computer with a Intel(R) Core(TM)2 Quad of
2.33GHz CPU and 3.00GB of RAM.

5.1 Algorithmic Issues

According to Algorithm 4.2, the parameter B is chosen from the range (0, ﬁkDH). In our
implementation, we choose B+ by means of

. D FR
Bk+1 = mln{ﬂk+1, /31(+1
where

~ ~ —H — _ —
rr ¢~ (gradf (VKL PRAY) 12 Te(E i Eran) + Te@E kg

T g Lgrad £ (VE, PRy)|2 TrELE) + Tr(il )

is the Fletcher—Reeves parameter. From Remark 4.1, the initial steplength o at iteration k
is set to be

_ITrGE 80 + e o)l
ITAVE BVFn + (A& BEIPF

o
Here, we choose oy by means of
o) = max {min{ak, EEB» Omax), amin} )

where ﬁf B is a Riemannian generalization of the Barzilai-Borwein steplength [21], which

is given by
_BB Tr(Sgk_lsé,k—l) + Tr(S,I;{k_ISn,k—l)
oy =
|Tr(Z£Ik_] Sek—1) + Tr(Z:{k_1Sn,k—l)|

with S¢ x 1 = ax—16—1 and Sy x—1 = ax—1nx—1 being the displacement of the variables in
the tangent space and Zg x—1 = &; — &;,_; and Z, x—1 = 7y — 7, being the difference of
gradients. Here we do not use a vector transport for Z¢ 1 and Z, x| but just compute them
as subtraction of two gradients in different tangent spaces because using a vector transport
might increase CPU time.

To achieve high efficiency in the implementation of Algorithm 4.2, the actual stopping
criterion is much more sophisticated than the simple one ||(&;, ;)| < €. In our implemen-
tation we use the same stopping criterion as that in [15]: we let Algorithm 4.2 run up to K
iterations and stop it at iteration k < K if ||(§k, )l <€, or rell(‘v_P) < €yp and rell} <ey,
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Table 1 Summary of input parameters for Algorithm 4.2

Parameter Value  Description

€ 107 Tolerance for the norm of gradients

€V, P) 107%  Tolerance for the difference of variables

€r 10712 Tolerance for the difference of function values

€ 10~12  Tolerance for constraint violation

) 10~%  Nonmonotone line search Armijo—Wolfe constant

h 3 Nonmonotone line search backward integer for consecutive previous function values
P 0.2 Steplength shrinkage factor

Omax 1 Upper threshold for steplength

Omin 10720 Lower threshold for steplength

) 1073 Initial steplength

T 5 Backward integer for consecutive previous differences of variables and function values
K 3000  Maximal number of iterations

or

mean{rellg;fnpi;l{k’n“, R rel’(‘V.P)} < 10€,,, and mean{rell}_min{k’T}H, e rell}} < 10ey

for some constants €, €,p, €7 € (0,1),and T, K € N+, where

B ||Vk+1 _ Vk” ”Pk—H _ Pk”

Ik K |f (VR phtly — f (VK| PRy
rely py =

, rel’, =
Jn Vai ! |f(VE, PO+ 1
For convenience, we summarize the default values and description for the parameters in

our algorithms in Table 1. All starting points V" and P were feasible and generated randomly
by means of VO = orth(randn(n, 1)) and P° = orth(randn (21, 1)) in Matlab style.

5.2 Comparison with the BEGM Algorithm and the TLS-IM Algorithm for Noisy
Pencils

To start with our experiments, let us review roughly the following function defined by [1]

h(X) = omin(A —AB) = min [[(A —21B)vll2, (G.D

lvi3=1

which can help us visualize the behaviors of the nonsquare pencil A — AB. This function
is a mapping from the complex plane (values of 1) to the real and nonnegative numbers. If
the matrix pair (A, B) has an eigenvalue X, the value of the function at A is exactly zero.
This is because, if the pencil A — Ao B is rank deficient, it must have zero as its smallest
singular value (and may have more than one zero singular value). For such a solvable pair
the eigenvalues are the local minimum points of this function. If Ag is perturbed, we get a
full rank pencil that leads to a strictly positive minimal singular value and, in the case of a
nonsolvable pair A and B, the function is strictly positive for all A. For a nonsquare matrix
pair (A, B), if we describe the contour plots of the function A(A) = oyin(A — AB) on the
complex plane, the local minimum of this function could help us to estimate how many
eigenvalues the nonsquare pencil A — 1B have.
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In our experiments, we generate the measured matrices A, B € C300%5 (3 = 300, n = 5)
in the problem (1.3) by the following procedure employed in [1,5]:

e Choose random matrices A, B e C5%5 , and Q € C300%5 whose entries’ real and imag-
inary parts are drawn independently from Gaussian distribution with zero mean and
standard deviation o = 1.

e Compute QR decomposition of Q, and define Qo to be its Q part.

e Define Ag and By by Ag = 50 % QOA, By = 50 % Qoé. Note that the nonsquare pencil
Ao — XBj has the same eigenpairs as the square matrix pencil A — AB.

e Define A = Ag+ Na, B = By + Np, where Na, Np are matrices of random noise.

Real and imaginary parts of N4, Np are drawn independently from Gaussian distribution
with zero mean and standard deviation equal to 0. The parameter o here represents the level
of noise in inputs. We also used the relative errors rel4 := ””A;AH” andrelg = ”&B”” to measure
the magnitude of the perturbation.

In our experiments, we used the matrices Ag, Bp with the pencil A9 — ABp having
five engenvalues —0.0186 — 0.3735i, —0.2457 — 0.0982i, 0.1503 + 0.7123i, 0.9989 +
0.9233i, 2.8651 + 1.6573i. We prepared different noise (N4, Np) with noise level 0 =
0, 0.25, 0.50, 0.75, 1.0, 1.25. We note that, the exact eigenvalues of noiseless pencil Ag—A By
is not necessarily equal to the optimal solution to the problem (1.1) with noisy inputs.

5.2.1 Comparison with the TLS-IM Algorithm

We first compare Algorithm 4.3 with TLS-IM algorithm [5] for the case of / = n, which
is the case to find a minimal perturbation for the pencil A — LB to have n eigenpairs. We
show that our proposed algorithm can achieve exactly the same eigenvalues as TLS-IM
algorithm, which is essentially a direct method to find n optimal eigenpairs. We also show
that both of two algorithms are robust and less affected by the data noise. To do so, for the
perturbed pair (A, B) with A = Ag + N4 and B = Bg + Np, in Fig. 1, we first describe
the contours of function (1) = opin (A — AB) in the A-complex plane with different noise
o = 0,0.25,0.50,0.75, 1.0, 1.25. We can see from Fig. 1 that, with o = 0, the function
h(X) = omin(Ao — ABp) have five minimum points, which match exactly the location of the
exact eigenvalues (represented by “o” signs) of the unperturbed pair (Ao, Bp). As the noise
level o increases, some of the local minima points of (1) vanished gradually. This implies
that, with noisy inputs, the perturbed pair (A, B) may have less than five eigenvalues.

In Fig. 1, the red x’s mark the optimal eigenvalues computed by Algorithm 4.3, and the
blue +’s mark the optimal eigenvalues computed by TLS-IM algorithm. Our computational
results show that, in the noiseless case, i.e., when o = 0, both of two algorithms capture
the “exact solution”, i.e., eigenvalues of A9 — A By, accurately. The other figures in Fig. 1
show that, as the noise level o increases, the discrepancy between numerical solutions and
exact solution increases. However, in either case, the two algorithms can achieve exactly
the same eigenvalues. On the other hand, most importantly, both of the two algorithms can
always give five solutions even for the case when the measured pair (A, B) have less than
five eigenvalues. This shows that both algorithms are robust and less affected by the noisy
data.

We prepare 10 data sets with different noise (N4, Np) with o = 0, 0.25, 0.50, 0.75, 1.0,
1.25, respectively. Figure 2 shows numerically computed eigenvalues by the two compared
algorithms. Since we used 10 data sets for each o, each figure has many points represent-
ing numerical solutions. Figure 2 shows again that, Algorithm 4.3 can achieve exactly the
same eigenvalues as TLS-IM algorithm, and can capture five eigenpairs. Our computational
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o=0 0=0.25
774,

O exact solution

X by proposed alg

+ byTLS-IMalg

Imaginary part
Imaginary part

1 2 - - -
Real part Real part
0=0.5 ! 0=0.75

/ O exact solution
3 ,«2 X by proposed alg
/) + byTLS-Malg

Imaginary part
Imaginary part

Real part

o=1

O exact solution
X by proposed alg
+ by TLS-IM alg

O exact solution
X by proposed alg
+ by TLS-IM alg

Imaginary part
Imaginary part

-3 -2 -1 0 1 2 3 4 5 6

Real part Real part

Fig. 1 Contour plots of the function 2(X) = opin(A — AB), built using the perturbed pair (A, B) with
o =0,0.25,0.50,0.75, 1.0, 1.25. “Exact solution” means the eigenvalues of the noiseless pencil

results are also reported in Table 2, in which ’o’ represents the level of noise in inputs,
‘rel4’ and ’relp’ denote the mean relative error of perturbation, 'IT.”, CT.”, Obj.” and
’Res.” denote the mean iteration numbers, the mean computational time in seconds, the mean
value of ||A — AII2 + |B — I§I|2 and the mean value of the residual ||AX — fs’XAlI for the
computed optimal solution (A, é, {(Ar, vi)}_;) by Algorithm 4.3 with X = [vq -+ vq],
A =diag(Aq, ..., A,) based on 10 repeated tests, respectively. In particular, the last column
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Fig.2 Eigenvalues computed by Algorithm 4.3 and TLS-IM algorithm. “Exact solution” means the eigenvalues
of the noiseless pencil. o represents the level of noise in inputs

in Table 2 shows the mean value of the error which is defined by

2n

Error := \/||A — A2+ B - B|? - ( Z Uiz([A B]))§~

i=n+1

Here, the singular values of [A B] are arranged with decreasing order. Generally, it is mean-
ingless to compare the iteration steps and computational time between two algorithms since

@ Springer



Journal of Scientific Computing (2020) 82:67 Page 27 of43 67

0=0 0=0.5
25 25 200822

O exact solution O exact solution

X by proposed alg
-+ by BEGM alg

X by proposed alg
-+ byBEGM alg

1468.18

1610.15
o 15 15
© ©
Q 978.815 Q
> . s y 112208
o L. X c B
S 05 o0 S 05 N
=2 489.452 g
£ £ 634.01
00881738
05 05 145.939
A -1
-1 0 1 2 3 4 -1 0 1 2
Real part Real part
0=0.75 0=1.25
25 25
O exact solution O exact solution
X by proposed alg 23814 X by proposed alg 2866.55

|
|

-+ by BEGM alg -+ by BEGM alg
© 18 e 15
@ 1863.19 © 2380.59
Q Qo
5 L. . 5 Yoo
S os T 1344.97 S o5 - 189463
5] ® X
£ £
3 826.758 . 1408.68
-0.5 -0.5
308.542
4 4 922.72
-1 o 1 2 3 4 -1 [ 1 2 3
Real part Real part
; . _ o MA=ABYIP - -
Fig. 3 Contour plots of the function 2(1) = min WY built using the perturbed pair (A, B) with
v

o =0,0.50,0.75, 1.25. “Exact solution” means the eigenvalues of the noiseless pencil

TLS-IM algorithm is essentially a direct method. We here report the iteration steps only to
emphasize that our proposed algorithm is very effective for finding a minimal perturbation
for the pencil to have n eigenpairs. The results reported in the last column show that the
computation results are in accordance with the theory established in the Corollary 2 in [2].

5.2.2 Comparison with the BEGM Algorithm

We then compare Algorithm 4.3 with BEGM algorithm [1] for the case of / = 1, i.e., the
problem (1.2), in the sense that the perturbed pencil admits at least one eigenpair. As pointed
outin [1], the optimization problem posed in (1.2) is equivalent to the optimization problem

I(A = AB)v|>
1+ A2

A stable and convergent numerical algorithm is proposed in [1] which is guaranteed
to converge to a local minimum of the function (X, v). Although, with different initial
values, the BEGM algorithm may result in the optimization process converging at different
local minima, and therefore, estimations of different eigenvalues. However, we here focus
only on the case for finding one eigenpair. The initial A in BEGM algorithm is set as the
largest eigenvalue of BTA [1]. In Fig. 3, we describe the convergence trajectory of two

2
algorithms on the contour plots of the function 4(X) = min %
v

optimal v is obtained by the right singular vector corresponding to the smallest singular

min (1, v) = subject to [|v]3 = 1.
\V

(with given A, the
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value of (A — AB)¥ (A — LB)), which built using the perturbed pair (A, B) with 0 =
0, 0.50, 0.75, 1.25. In Fig. 3, the white o’s still mark the exact eigenvalues of the clear matrix
pair (Ao, Bp). The white dots and the red ’x’ sign present the iterative algorithm results and
the optimal eigenvalue computed by Algorithm 4.3, respectively. The black dots and the
pink ’+ sign present the iterative algorithm results and the optimal eigenvalue computed
by BEGM algorithm, respectively. Some more computational results are also reported in
Table 3, in which the ‘mean 1terat10n numbers, the mean computatlonal time in seconds, the
mean value of ||A — A ||2 +||B — B 1> and the mean value of ||AV - ABV|| for the computed
optimal solution (A B {(x, v)}) for the compared two algorithms are reported based on 10
repeated tests. We can see from Table 3 that, in most cases, Algorithm 4.3 runs faster that
BEGM algorithm in terms of computational time and iteration steps.

An average of results of 10 random tests of Algorithm 4.3 for the case 1 <[ < n is
reported in Table 4, where parts of the items are the same as those of Tables 2 and 3. The
items “grady, f” and “grad p f” represent the mean value of norm of gradient of f with respect
to V and P based on 10 repeated tests, respectively. The case / = 1 and [ = n are reported
again in Table 4 just for comparison only, which show that Algorithm 4.3 is relatively less
efficient for the case 1 </ < n.

5.3 Further Numerical Performance

We compared the performance of Algorithm 4.2 with the Riemannian conjugate gradient
methods used in [12-14,16] which are all applicable to the problem (2.2) with necessary
modifications. The known matrices A, B € C"*" in (2.2) are similar to the ones given in last
example with o = (.5 but different problem size parameters (m, n, [). The numerical com-
parison results are reported in Table 5, where the terms “CT.”, “IT.”, “grady, f” and “gradp
are the same as those in Table 4, “Obj.” means the objective function value |[[AV* BV¥]P¥|,
“feasiy” and “feasip” mean respectively the feasibility |VEE v  — [ and | P¥® P* — )|
at the final iterate by implementing the proposed algorithms. In Table 5,

e “RCG-PR” stands for the Riemannian conjugate gradient method used in [14] designed
to solve the problem (2.2), whose line search is the strong Wolfe line search, and the
parameter S in (3.1) is the Riemannian version of the Polak—Ribiere-type formula by
combining the vector transport proposed. The retraction adapted in [14] is the O R-based
retraction, and the vector transport is constructed by using the orthogonal projection
operator onto the tangent space. On the real Stiefel manifold St(n, [, R), we often use
a retraction R¥ based on the real QR decomposition. However, the map R¥ cannot be
a retraction on Stp(n, [) and Stp(2/, I) (see [10] for more details). Alternatively, we can
use a retraction RSP defined by

RYE) = (af @'V +8)) = dlgf(V +6). V eStp@n.D). & € TyStp(n. 1),

where the ¢ f () denotes the Q-factor of the complex Q R decomposition of the complex
matrix in parentheses. That is, if a full-rank n x / complex matrix M is decomposed into

M =QR, QeStnl,C), ReS) .

then ¢ f (M) = Q, where Sj;,p denotes the set of all / x I upper triangular matrices
with strictly positive diagonal entries. Therefore, a retraction R on the product manifold
Stp(n, ) x Stp(2l, 1) is immediately defined as

R .5 E = (RFPE®. RP®)
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where (V;, P) € Stp(n, 1)xStp(21, 1) and (€, 7)) € Ty, (Stp(n. 1) x Stp(21, 1)). Further,
the retraction on Stp(n, [) x Stp(2/, ) corresponds to the retraction R on St(n, [, C) x
St(21, 1, C) defined by

R py(aE, m) = (RS (@E), RE@n) = (@f(V+ag), qf (P +an), (5.2)

forany o € R, where (V, P) € St(n, [, C) xSt(2l,1, C)and (¢, n) € Tv,p)St(n, [, C) x
St(21, 1, C). The vector transport used in [14] is defined by

Tae,m (& x) = PR(V/,P)(O‘(EJI)) @ x)

= (¢ —af (V +a)her(af (V +a)5), 1 —af (P +amher(qf (P +amp)
(5.3)

where (£, 1), (¢, x) € Ty, p)St(n, [, C) x St(21, 1, C).

e “RCG-MPRP” stands for the Riemannian geometric modified Polak—Ribiere—Polay con-
jugate gradient method used in [12] designed to solve to the problem (2.2), with the same
QR-based retraction and vector transport as “RCG-PR”.

e “RCG-FR” stands for the Riemannian Fletcher—Reeves conjugate gradient method used
in [13] designed to solve the problem (2.2), with the same QR-based retraction and vector
transport as “RCG-PR”.

e “RCGQR” stands for a modification of Algorithm 4.2, by using the QR-based retraction
(5.3) and the corresponding differentiated retraction as a vector transport (see p. 173 of
(11]).

e “RCGPol” stands for another modification of Algorithm 4.2, by the polar decomposi-
tion to construct a retraction (see p. 59 of [11]), and naturally using the corresponding
differentiated retraction as a vector transport (see p. 173 of [11]).

We see from Table 5 that, all the compared algorithms work very efficient for solving the
problem (2.2) in the case I = 1, while the performance of Algorithm 4.2 is slightly better
than that of the other algorithms in term of computational time and iteration steps. In the
case 1 < I < n Algorithm 4.2 perform much better than others. In addition, we present in
Fig. 4 the plots of optimality (quadratic sum of norm of the gradient) versus iteration of one
particular test to compare further the efficiency of these algorithms. We see that Algorithm 4.2
outperformed the other five competitors in general.

6 Concluding Remarks

In this paper, we have considered the generalized eigenvalue problem for nonsquare pencils,
by finding the minimal perturbation to the pencil such that the perturbed pencil has [ distinct
eigenpairs with 1 </ < n, which was first shown in theoretical study by Chu et al. [2] that can
be reduced to a special form of optimization problem (1.4). We have focused on solving the
general optimization problem (1.4) from numerical point of view, and proposed an efficient
algorithm based on Riemannian nonlinear conjugate gradient method with nonmonotone
line search technique. It is confirmed numerically that the proposed algorithm is effective for
any 1 <[ < n. In particular, for the case [ = n, the algorithm is less affected by the data
noise and guaranteed to yield n eigenpairs, and the algorithm generated exactly the same
optimal solution as Ito and Murota’s algorithm [5], whose approach is essentially a direct
method for designing for solving the problem (1.1), and was proposed by Boutry et al. in [1].

@ Springer
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Fig.4 Evolutions of norm of the gradients versus iterations for different problem sizes

Moreover, the algorithm runs faster than Boutry et al.’s algorithm for the case with/ = 1, in
the sense that the perturbed pair with minimal perturbation admits at least one engenpair.

Acknowledgements The authors would like to thank both reviewers for their very constructive suggestions
that lead to the improvement of this manuscript.
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7 Appendix
7.1 Proof of Lemma 4.1

Proof For any point (\7, 13) € &, we have || V|| = ||13|| = /I, which imElieE that the level set
@ is bounded. This together with the fact that the objection function f(V, P) is a continuous
function with respectto V and P, shows that @ is also closed. Thus the level set ® is compact.

m}

7.2 Proof of Lemma 4.2

Proof We proceed by induction. Since (%o, 7o) = —grad £(V°, P0), (35) holds immediately
for k = 0. Suppose (4.11) holds for some k. Then ,3,511 > ( according to (32) and therefore

Br+1 is well defined and the ratio ¢y = % lies in [0, 1]. By (4.2), (4.3) and (4.4), we
1

have

(grad f (VL PMY ey, i)
=rk+1ﬂ£+1(gradf(v"+‘ P T, s G m)) llgrad £ (VAH!, PRHD) )2
rer(grad f(VEHL PR T o o (B ) — max(Yepr, —(grad £(VE, PR, &L 7))

max{Y;, 1, —(gradf(VK, Pk), (&, 7))}
erad (VAL PRy 2, (7.1)

If (grad f (VA+1, PAHLy T TG, nk)(“g‘k, %)) > 0, it follows from the induction hypothesis
and (7.1) that Yy 41 > 0 and

(grad f(VEHL PREDY  (Br, k)
<rk+1—1><gradf<vk+1 P T, & s B ) + (grad £ (VE, PR, (&, )
Yit1

llgrad £ (V¥+1, PR+ |12,

which show that gradf(VkJrl 2N (Ek+1, Tk+1)) < 0.
If (grad f(VK+1 pktly T .. nk>(5k Ti)) < 0, it follows from (7.1) that

(grad f (VEFL PR (gt Tesn)
(grad f (V¥ PK), (. 70)) + regr (grad f (VL PRY T & o & i)
(grad f (VK, P}y, (&, 7))
llgrad £ (VAT PRFL)2,

which also gives (grad £ (VA1 PA+1) (& 1, Fiy1)) < 0. Therefore (4.11) holds for k + 1
in both cases. By induction, we conclude that (4.11) is true for all k. ]

7.3 Proof of Lemma 4.3

Proof Tt follows from the nonmonotone linesearch step, Step 2, of Algorithm 4.1, that when
k is sufficiently large, p~'ay does not satisfy (4.1). This means,
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FR pey (o™ . 0)))
> max({f(VE, PY), ..., f(VE=h® | pr=h®yy 4 5=l (erad f(VE, PY), &, T0))
> f(Vk, PRy + Sp—laugradf(vk, PXy, &, ). (7.2)

We note that the pullback function f(? 7) defined in (3.26) is continuously differentiable
since both the cost function f (V P) and the retraction mapping ’R(V P defined in (3.8) are
continuously differentiable. Then there exist two constants ¥ > 0 and L > 0 such that

lgrad £ 5. 1) — grad fiy 5, &. DIl < LIE. T — €. Dl (7.3)

forany (V, P) € ®and &, ), (¢, X) € Ty 5 Stp(n, 1) x Stp(2L, 1) with | E, DI, 1T, )
<Kk.

By applying the mean-value theorem, together with (7.3), there exists a constant w; €
(0, 1) such that for all k sufficiently large,

£ (R o™ o G 100 — £(7%, P
= 1 (Re i (0 oG 700 ) = f (R vy O, )
= e, (07 e T10) = T, <O(Vk,?k))
=p"'u (gradﬁe(;kﬁk) (rp™ G 7)) . G 5k)>
=p o <gradfle(vk_;k) O ) G, ﬁk)> — o o <(§k, ), gradﬁe(vkﬁk) (O(Vk,ﬁk))>
+P_l(¥k<(gkv ), grad fr gy, (0r0™ ﬁk)))
< o o grad gy o, O i), G o)) + x Lo G o)1
< o™ e (grad f (75, PY), B, i) + Lo 2 G i 12 (7.4)
Combining (7.2) with (7.4) together gives for all k sufficiently large,

(8 — Dp(grad f (V¥, PY), (G, )
LI Ge. 012
Then we get (4.12) by setting u = (1 — 8)p/L.
The proof of the second part is the same as that of Theorem 3.2 in [7]. To make this lemma

self-contained, we prove it as follows.
For j > 0, define

Ok >

Fj = max{f(Vh, PU), (it phitly | p(yhith=1 phith=1yy

We show by induction that

FERHLPRFI=l < iy 4 Say o (grad f(VRIT =2 PRIFH=2) i o Fipigio2)

(7.5)
forall i = 1,...,h. In fact, due to (4.1), (7.5) holds for i = 1. Assume (7.5) holds for all
i=1,...,tforsome 1 <t < h — 1. Then it follows from (4.11) that

FVRH=2 phiti=2y < p. - foralli=1,...,1

This, together with (4.1), implies that
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f(\7hj+t’ 13’hj+t)
< max{ f(VRHL Phiti=1) p(hi=2 Bhiti=2) p(hitich phitichyy
+ 8apjpr—1 (grad f (VIH=T PRIl e Thjse—1))
< Fjoy + Sapjye—1 (grad f (VA= PRy D (E 1 1))

Thus, (7.5) is true for ¢ + 1. Therefore, (7.5) is true for i = 1,...,h. By (7.5) and the
definition of F;, we have

Fj=Fj—y+8 max {“hj+i72 (grad FVhIHi=2 phiti=2) (ghj+i—2s7ilhj+i72)>}- (7.6)

Since F; is bounded below, we deduce by summing (7.6) over j that (7.5) is true. O

7.4 Proof of Theorem 4.1

Proof We prove this theorem by contradiction. Suppose thatlim infy_, o, ||grad f (Vk, ﬁk) I #
0 This means there exists a constant y € (0, 1) such that

llgrad f(V¥, PX)|| >y, forallk. (1.7)

From (7.1), we can see that the formula (4.4) of :31<D+1 can be rewritten as

. _ (gradf (VL PMD G Tik) -
T e (grad (VL PR T @ o) B ) — max{ Vi, —(grad f (VAL PR, G0N}
(7.8)

By (4.3), it is easy to prove that the denominator of ﬂkD+ , in (7.8) is equivalent to

(grad f (V¥, P¥), (Ek,ﬁk»—max{(l—rk+1><gradf<\7k+‘,ﬁ'k+‘), TGy Gl T0)),

— i {erad f (T4, PR, T o G (7.9)

Substituting (7.9) into the denominator of ﬂ,?+1 in (7.8), together with the results of
Lemma 4.2, we have

(gradf (VFH!, PHHY), - G Tlk)
(grad f (VK PR), (&, 7))

0< B < B < (7.10)

It follows from (4.2) that Gr1. Ti1) + grad f (VAL PN = B T,, @, g G ).
Hence

1Gerr, T D> = — 2grad £ (VEH, PR G, Tien)
— ligrad f(VEFL PMYOI2 4+ B2 1T, 3 G IO
(7.11)

Dividing (7.11) by (grad f(VE+!, Py (&1, Fiea1))2, using (7.11), and together with

the Ring-Wirth nonexpansive condition (3.15) of the presented vector transport defined in
(3.12), we can get
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I g1, Tt ) 1I?

(grad f (VL PR+LY - (i, Tikg)?
2

< - ~ ~ ~ P
T (grad f(VKHL PEED) (&, Tgn))
||gradf(vk+1, §k+1)||2

(grad f(VKHL PR (B, Tikan))2
2

(grad f (VK PR (B, Tis))
lgrad £ (V+1, PrD))2
(grad f (VKT PRHD) - (Epr, k1))

llgrad f (VA1 PR+ 1
T ((gradf(VkH, P, Beon mee))? | lgradf (VRHT, Fk+1)||2>
N o G 01>
llgrad f (VK+1, PE+1)|12 0 (grad f (VK PR), (&, 7k))>
1 T T2
= llgrad f (VEFT, PR 2 <gradf(£§kﬁ2;) ”@k, )2 712
Combining the recursion of (7.12) and the assumption (7.7) together gives
- ! 1 Go. 7o) 112

(Gl -y LS 1550 IO
(grad f (VK PR), G, T0)? & llgrad f (VI PO (grad f(VO, PO), (o, 70))?

1T, @ 0 Gi O
(grad f (VE, Pk), (&, T))?

(G
(grad f (VE, PR). (& 770))?

2

k 1 k+1
=) ——~——— 1= —5. (7.13)
 ||grad f (Vi, PT)|2 y

Then we have that

(gradf(vk;ﬁi), . 7)) > v’ . (7.14)
Il &k, 7o) 112 k+1

On the other hand, from the second inequality in (7.13) and (7.12), we have

llgrad f (V¥, P¥)? 2
(grad f (VK PR), (&, )% (grad f(VK, PR, (&, k)

_ |Gt =) _k
= (grad f(VE=1, PE=1) 0 (G, m))? — v
which yields
k ~ o~ ~ ~ o~ ~ ~ o~
— (grad £ (V¥ PY), (& 7)) = 2(grad f(VE, P, G, i) + llgrad £ (VE, PRY|2.
(7.15)
If

~ o~ ~ 3 ~ o~
— (grad £ (VK, P%), (&, ) < gngradf(vk, Phy|2,

then together with (7.15) gives
2

(grad f (V¥, PY), B, 70)% = Z—kngradf(vk, PRy,
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Therefore, by (4.11) and (7.7), we have

— (grad f(V¥, P, (&, 0)) zmin{— - (7.16)

Using @y > ayyin, together with (4.12), (7.14) and (7.16), we have

Z, minh [—Othj+i—2 <grad FVRIF=2phidi=2y (i o, ﬁhj+i—2)>}
j=1

. . iy pii. o~ ~
> mlnhmln{—ahjﬂfz(gradf(‘/ Jrim2 phiti=y (éhj+i72777hj+i72)>7

(grad f (VIH+=2 Phi+i=2) (i o Fhjsio2)) }
I Enjti—2, Mnj+i—2) 112
3 2 . 2 . 2
. Y “Omin Y “Omin ny
T itk { 8 ’2./hj+i—2’hj+i—1}
2

. 3)/2(¥min Vzamin wy }
> ) min : , — = 400,
_Z { 8 2Vh(j+1) h(j+1)

which contradicts with (4.13). This prove (4.14). The existence of a first-order critical
accumulation point follows immediately from the compactness of the product manifold
Stp(n, 1) x Stp(21,1) in Lemma 4.1. O
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